

High Field Magnet Development

Alexander Zlobin
Technical Division, Fermilab

High Field Magnet Program Goals

HFM Program is focused on the development of next generation SC accelerator magnets with high operating fields (>10 T at 4.5 K) and large operating margins for

- o **Tevatron**
- o LHC luminosity upgrade
- o Future HEP facilities such as VLHC, etc.

This Program was started in 1998 and originally driven by a VLHC needs, which determined main magnet parameters such as field range, aperture, magnet design, etc. Since 2001 it is regarded as a generic SC magnet R&D program.

The specific feature of our program is that it focuses on practical magnet designs

o we worry about aperture and length, field quality, protection, manufacturability, cost, reproducibility, etc... not just peak field

Superconductor and Technologies

At the present time we develop accelerator magnets based on Nb₃Sn superconductor

- o Critical parameters of Nb_3Sn (B_{c2} , T_c and J_c) are much higher than NbTi parameters
- High-performance Nb₃Sn strands are commercially available in long lengths at affordable price

We keep an eye also on other existing or new superconductors such as Nb_3Al , MgB_2 , HTS, etc. which eventually may become potential candidates for accelerator magnets.

Since most of the new superconductors including Nb3Sn are brittle, we explored two basic technologies for brittle superconductors:

Wind-and-React and React-and-Wind

Nb3Sn strands produced using the IT and PIT technologies

<u>Design Approaches</u>

We worked with two basic dipole coil designs:

- shell-type coils with a cos-theta azimuthal current distribution
 - o Traditional coil design for SC accelerator magnets, due to small bending radii requires W&R approach
- block-type coils arranged in the common coil configuration
 - o Friendly to brittle conductors thanks to large bending radii, allows R&W approach

We have accomplished first phase of R&W studies last year and now we focus on W&R technology.

W&R Cos-Theta Dipole Models

The goal of this work was to develop 10-11 T Nb_3Sn accelerator quality magnets based on the W&R technique.

The main design features of 1-m long cos-theta Nb_3Sn dipole models (HFDA) are:

- o High-Jc 1-mm Nb₃Sn strand
- o 28 strand cable
- o 2-layer coil with cold iron yoke
- o 43.5-mm diameter bore
- o Maximum field of 12 T at 4.5 K

This design rests on the designs of the first Nb₃Sn dipole models developed in 1990s:

- o 10 T dipole model (CERN/ELIN)
- o 11 T MSUT (Twente University)
- o 13 T D20 (LBNL)

28-strand cable developed and fabricated at Fermilab

Cos-Theta Dipole Test Summary

Three short models (HFDA02-04) were fabricated and tested in FY2001-2002.

Results achieved:

- Good, well understood field quality including geometrical harmonics and coil magnetization effects
 - We developed and tested a simple and effective passive correction system to correct large coil magnetization effect in Nb₃Sn accelerator magnets
- Quench current was only 50-60% of expected short sample limit (B_{max}~6-7 T)

Quench summary of HFDA short models

SC Magnets at Fermilah

Magnetic Mirror

Since last year we have focused on understanding and improving magnet quench performance.

We study and optimize quench performance issues using half-coils and a magnetic mirror configuration (HFDM).

The main advantages of this approach are:

- The same mechanical structure and assembly procedure
- o Advanced instrumentation
- o Shorter turnaround time
- o Lower cost

Coil and Cable Tests

HFDA03b instrumentation and quench location

Mirror magnet quench summary

Three mirror magnets have been tested last year: •HFDA03a, HFDA03b, and HFDM02

Quench location, quench propagation velocity, critical current and temperature margin measurements point out on magnetic instability in Nb3Sn strands at low fields.

Strand Instability Studies

Instabilities in strand critical current and magnetization

Strand stability calculations and measurements revealed serious instability problems for the 1 mm MJR Nb3Sn strand used in our cos-theta dipole models.

Cable Short Sample Tests

Fermilab:

 23 kA SC Transformer, Bext=0T, T=1.9-4.2K

BNL:

❖ 25 kA PS, Bext=0-7 T, T=4.3K

First results:

- Good agreement of experimental data obtained at Fermilab and BNL on similar samples in similar test conditions
- The results are consistent with Fermilab's instability model and magnet test results
- These tests will be continued

28 strand MJR-1.0mm cable tested at BNL and Fermilab

Small Racetracks

We test cable using the technique developed at LBNL.

The goals are:

- o Test and optimize real full-size cables before using in magnets
- O Use simple reliable mechanical structure to avoid test setup effects
- ❖ 1st (PIT1.0) Fermilab racetrack: tested in January-March 2004
 - o Racetrack SR01 reached the short sample limit @4.5K (see quench history)
- ❖ 2nd (MJR1.0) Fermilab racetrack: tests in April-May 2004.

Cos-theta Models

HFDM03:

- o Mirror configuration
- o PIT 1mm cable
- o Optimized pre-stress
- o Advanced instrumentation
- * Fabrication has been completed
- test in April.
- ❖ Goals:
 - o Reach 10 T field level
 - o Test mechanical structure at high fields

Next steps:

- Dipole model HFDA05:
 - o 28-strand PIT 1mm cable w/o SS core (coil from HFDM03+new half-coil)
- **Dipole model HFDA06:**
 - o 28-strand PIT 1mm cable with SS core (two new half-coils)

HFDM03 cold mass